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Abstract: To study the availability of complex and complicated repairable systems having two or more 

states as reduced, working, and failed it is important to fully characterize the states in which a system may 

be such that the described system regulates some stochastic process. Five smaller units make up a wheel 

plant. The wheel manufacturing facility's reliability and availability are represented in this study using a 

time-homogeneous Markov process with diminishing states. It has been found to be a successful approach 

that is entirely dependent on modeling and numerical analysis. 
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1. Introduction 
 

The states of repairable systems with two or more states (reduced, functional, and failed) must be 

appropriately represented so that the system follows a stochastic process in order to investigate performance 

metrics for such systems. In this work, the dependability and availability of a wheel manufacturing facility 

with decreased states are represented using the time-homogeneous Markov process. It is a potent method 

based solely on modeling and discrete analysis. The system analyst must choose components while analyzing 

a system with a variety of features in order to sustain fault-free operation. In this research paper, various 

steady-state parameters of system are investigated, and solved/optimized using the recursive method. The 

purpose of the paper analysis is to effectively determine reliability function and steady state availability of 

the operational system process as a Markov process, as well as to get best system designing components 

which enables long-term, error-free operation, which is necessary for maximum system productivity. This 

study examines the availability and reliability of a wheel manufacturing plant in order to highlight the 

importance of the Markov process. A state transition diagram is used to describe the system states, and when 

the diagram is updated, the reliability function appears. While the normalizing condition is in place, a genetic 

algorithm is employed to obtain and optimize the expression for steady-state availability. Using a Markov 

diagram of a wheel manufacturing facility, this study aims to (1) extract a reliability function and an 

availability function, and (2) formulate an optimization model for steady state availability. The ideal design 

parameters and system performance indicators are described and accomplished using an exemplary case. 

The behavior of a bread plant was examined by Kumar et al. in [2018]. In order to do a sensitivity analysis 

on a cold standby framework made up of two identical units with server failure and prioritized for 

preventative maintenance, Kumar et al. [2017] used RPGT. Two halves make up the current paper, one of 

which is in use and the other of which is in cold standby mode. The good and fully failed modes are the only 

differences between online and cold standby equipment. A case study of an EAEP manufacturing facility 

was examined by Rajbala et al. [2018] in their work on system modeling and analysis in 2018. A study of 

the urea fertilizer industry's behavior was conducted by Kumar et al. [2017]. The mathematical formulation 

and profit function of an edible oil refinery facility were investigated by Kumar et al. in 2017. In a paper mill 

washing unit, Kumar et al. [2018] investigated mathematical formulation and behavior study. Using RPGT, 

looked at the Reverse Osmosis Water Treatment Plant. In their study, Kumar et al. [2018] investigated a 

3:4:: outstanding system plant's sensitivity analysis. PSO was used by to research limited situations. Using 
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a heuristic approach, Rajbala et al. [2018] investigated the redundancy allocation problem in the cylinder 

manufacturing plant. Kumar and Rajbal [2018] studied on the reliability and availability analysis using 

RPGT-A general approach. Kumar [2018] studied on the Performance analysis of a Rice Plant using RPGT. 

2. System Description:  

This article discusses the wheel manufacturing industry, which satisfies many of our wants and requirements 

on a daily basis. The subsystems of the wheel manufacturing facility include the gravity die casting machine, 

gate cutting machine, heat treatment machine, and turning machine. Each subsystem in this plant serves a 

specific purpose in the overall system's operation because each is essential to the plant's success. The 

subsystems are all linked together in sequence. The heat treatment machine, a subsystem of the wheel 

production facility, is detailed in this paper. The operation or failure of any one of the system's components 

has some effect on how the system functions. 

2.1 Consideration and Notations: 

 Continuous random variables that are stochastically independent are repair time and failure-

free time. 

 When fixing a broken system, failures are not considered. 

 On a first-in, first-out basis, repairs are made, and a repaired item is regarded as equivalent to 

a brand-new one. 

 P, Q, R, S operational conditions of each of the four main feeding components. 

 P,q, r, s failed states of units P, Q, and reduced states of units R, S, respectively. 

2.2 State Transition Diagram: 

 

 

Figure 1: State Transition Diagram 

 

 

2.3 Model Description: 

At first the system in the figure 1 is in fully working when all the units P, Q, R, and S are in fully working 

state. The failure rates of units P to p are 𝜆𝑝, Q to q is 𝜆𝑞. As the unit ‘R and S’ have sub-components so it 

works in reduced state. Here 𝜆𝑝, 𝜆𝑞 , 𝛼𝑟, and 𝛼𝑠 are the failure rates of the subsystem. 𝜇𝑝, 𝜇𝑞 , 𝛽𝑟, and 𝛽𝑠 are 
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the repair rates of the subsystem. 

2.4 Mathematical Modeling 

At any time t, system under study is in any specific state, and it thereafter moves through failed and 

decreasing states. First order differential equations and the system's state transition diagram are used to create 

the model's mathematical structure. The following differential equations are connected to the process at the 

end of this chapter and are the outcome of various probability considerations. The availability expressions 

for time-dependent and steady-state of the system are defined by solving these equations. The pertinent 

transition diagram of the system is drawn in Figure 1. To study the system Markov process and governing 

differential equations can be simply generated from a transition diagram. 

𝑑𝑝0(𝑡)

𝑑𝑡
+ (𝜆𝑃 + 𝜆𝑄 + 𝛼𝑅 + 𝛼𝑠) 𝑃0(𝑡) =  𝜇𝑃 𝑃1(𝑡) +   𝜇𝑄 𝑃2(𝑡) +  𝛽𝑅 𝑃3(𝑡) +  𝛽𝑠 𝑃4(𝑡)...   (1) 

𝑑𝑝1(𝑡)

𝑑𝑡
+ 𝜇𝑃 𝑃1(𝑡) =  𝜆𝑃 𝑃0(𝑡) …. (2) 

𝑑𝑝2(𝑡)

𝑑𝑡
+ 𝜇𝑄 𝑃2(𝑡) =  𝜆𝑄 𝑃0(𝑡) …. (3) 

𝑑𝑝3(𝑡)

𝑑𝑡
+ (𝜆𝑃 + 𝜆𝑄 + 𝛽𝑅) 𝑃3(𝑡) =  𝛼𝑅 𝑃0(𝑡) +   𝜇𝑄 𝑃4(𝑡) + 𝜇𝑄 𝑃5(𝑡) +   𝛽𝑠 𝑃9(𝑡) … (4) 

𝑑𝑝4(𝑡)

𝑑𝑡
+ 𝜇𝑃 𝑃4(𝑡) =  𝜆𝑃 𝑃3(𝑡)… (5) 

𝑑𝑝5(𝑡)

𝑑𝑡
+ 𝜇𝑄 𝑃5(𝑡) =  𝜆𝑄 𝑃3(𝑡) …. (6) 

𝑑𝑝6(𝑡)

𝑑𝑡
+ (𝜆𝑃 + 𝜆𝑄 + 𝛽𝑠 + 𝛼𝑅) 𝑃6(𝑡) =  𝛼𝑠 𝑃0(𝑡) +   𝜇𝑃 𝑃7(𝑡) + 𝜇𝑄 𝑃8(𝑡) +   𝛼𝑅 𝑃9(𝑡)… (7) 

𝑑𝑝7(𝑡)

𝑑𝑡
+ 𝜇𝑃 𝑃7(𝑡) =  𝜆𝑃 𝑃6(𝑡)… (8) 

𝑑𝑝8(𝑡)

𝑑𝑡
+ 𝜇𝑄 𝑃8(𝑡) =  𝜆𝑄 𝑃6(𝑡)… (9) 

𝑑𝑝9(𝑡)

𝑑𝑡
+ (𝜆𝑃 + 𝜆𝑄 + 𝛽𝑠) 𝑃9(𝑡) =  𝜇𝑃 𝑃10(𝑡) + 𝜇𝑄 𝑃11(𝑡) +   𝛼𝑅 𝑃6(𝑡)… (10) 

𝑑𝑝10(𝑡)

𝑑𝑡
+  𝜇𝑃 𝑃10(𝑡) =  𝜆𝑃 𝑃9(𝑡)… (11) 

𝑑𝑝11(𝑡)

𝑑𝑡
+  𝜇𝑄 𝑃11(𝑡) =  𝜆𝑄 𝑃9(𝑡)… (12) 

A Markov process is said to be stationary if state probabilities are stable with respect to time [1] and are 

attained taking the conditions: as 𝑡 → ∞, 𝑃𝑖(𝑡) → 𝑃𝑖 and 
 𝑑𝑝𝑖 (𝑡)

𝑑𝑡
→ 0, ∀ 𝑖. 

(𝜆𝑃 + 𝜆𝑄 + 𝛼𝑅 + 𝛼𝑠) 𝑃0 = 𝜇𝑃 𝑃1 +   𝜇𝑄 𝑃2 +  𝛽𝑅 𝑃3 +  𝛽𝑠 𝑃4….  (13) 

𝜇𝑃 𝑃1 =  𝜆𝑃 𝑃0 ….            (14) 

𝜇𝑄 𝑃2 =  𝜆𝑄 𝑃0 ….             (15) 

(𝜆𝑃 + 𝜆𝑄 + 𝛽𝑅) 𝑃3 =  𝛼𝑅 𝑃0 +   𝜇𝑄 𝑃4 + 𝜇𝑄 𝑃5 +  𝛽𝑠 𝑃9 …        (16) 

𝜇𝑃 𝑃4 =  𝜆𝑃 𝑃3…           (17) 

𝜇𝑄 𝑃5 =  𝜆𝑄 𝑃3 ….        (18) 

(𝜆𝑃 + 𝜆𝑄 + 𝛽𝑠 + 𝛼𝑅) 𝑃6 =  𝛼𝑠 𝑃0 +   𝜇𝑃 𝑃7 + 𝜇𝑄 𝑃8 +   𝛼𝑅 𝑃9… (19) 

𝜇𝑃 𝑃7 =  𝜆𝑃 𝑃6…         (20) 

𝜇𝑄 𝑃8 =  𝜆𝑄 𝑃6…        (22) 

(𝜆𝑃 + 𝜆𝑄 + 𝛽𝑠) 𝑃9 =  𝜇𝑃 𝑃10 + 𝜇𝑄 𝑃11 +   𝛼𝑅 𝑃6… (23) 

𝜇𝑃 𝑃10 =  𝜆𝑃 𝑃9…        (24) 

𝜇𝑄 𝑃11 =  𝜆𝑄 𝑃9…      (25) 

Solving these linear differential equations recursively using normalizing condition, i.e., sum of all 

probabilities is one in terms of  𝑃0, we have various steady state probabilities as given in below table 1: 

Table 1: Various Steady state Probabilities 
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Now, using the 

normalizing condition ∑ 𝑃𝑖
11
𝑖=0 = 1 … (27) 

𝑃0 = [1 +
𝜆𝑃

𝜇𝑃
+

𝜆𝑄

𝜇𝑄
+

𝛼𝑅 𝛼

𝛽𝑅𝛽 
+   

𝜆𝑃𝛼𝑅 𝛼

𝜇𝑃𝛽𝑅𝛽 
+  

𝜆𝑃𝛼𝑅 𝛼

𝜇𝑃𝛽𝑅𝛽 

+
𝛼𝑆 

𝛽 
+

𝜆𝑃𝛼𝑆 

𝜇𝑃𝛽 
+

𝜆𝑄𝛼𝑆 

𝜇𝑄𝛽  
+  

𝛼𝑅𝛼𝑆 

𝛽𝑆𝛽 
+  

𝜆𝑃𝛼𝑆 𝛼𝑅

𝜇𝑃 𝛽𝑆𝛽  
+

 
𝜆𝑄𝛼𝑆 𝛼𝑅

𝜆𝑄𝛽𝑆𝛽  
 ]−1 … (28) 

 Where 𝛼 = 𝛼𝑅 + 𝛼𝑆 + 𝛽𝑆 𝑎𝑛𝑑 ,𝛽 =   (𝛼𝑅 + 𝛽𝑆 ) 

The steady state availability [1] is given by the equation as follows: 

𝐴𝑣𝑠 =  𝑃0 + 𝑃3 + 𝑃6 + 𝑃9, i.e., sum of the probabilities of all working states 

= [ 1 +  
𝛼𝑅 𝛼 

𝛽𝑅𝛽 
+ 

𝛼𝑆 

𝛽 
+

𝛼𝑅𝛼𝑆 

𝛽𝑆𝛽 

] 𝑃0 …. (29) 

This expression is reduced using [28],  

𝐴𝑣𝑠 =  
1

(1+(𝜆𝑃/ 𝜇𝑃) +(𝜆𝑄/ 𝜇𝑄)) 
 ….             (30) 

While calculating the dependability function for this Markov process all the down states in the transition 

diagram are considered as absorbing states. The differential equations associated with the transition diagram 

produces is as follows: 
𝑑𝑝0(𝑡)

𝑑𝑡
+ (𝜆𝑃 + 𝜆𝑄 + 𝛼𝑅 + 𝛼𝑠) 𝑃0(𝑡) =   𝛽𝑅 𝑃3(𝑡) +  𝛽𝑠 𝑃6(𝑡)...   (31) 

𝑑𝑝1(𝑡)

𝑑𝑡
=  𝜆𝑃 𝑃0(𝑡) …. (32) 

𝑑𝑝2(𝑡)

𝑑𝑡
=  𝜆𝑄 𝑃0(𝑡) …. (33) 

𝑑𝑝3(𝑡)

𝑑𝑡
+ (𝜆𝑃 + 𝜆𝑄 + 𝛽𝑅) 𝑃3(𝑡) =  𝛼𝑅 𝑃0(𝑡) +  𝛽𝑠 𝑃9(𝑡) … (34) 

𝑑𝑝4(𝑡)

𝑑𝑡
=  𝜆𝑃 𝑃3(𝑡)… (35) 

𝑑𝑝5(𝑡)

𝑑𝑡
=  𝜆𝑄 𝑃3(𝑡) …. (36) 

𝑑𝑝6(𝑡)

𝑑𝑡
+ (𝜆𝑃 + 𝜆𝑄 + 𝛽𝑠 + 𝛼𝑅) 𝑃6(𝑡) =  𝛼𝑠 𝑃0(𝑡)… (37) 

𝑃1 =  
𝜆𝑃

𝜇𝑃
𝑃0 

 

𝑃2 =  
𝜆𝑄

𝜇𝑄
𝑃0 

 

𝑃3 =  𝑃0𝛼/𝛽  
 

𝑃4 =  
𝜆𝑃𝛼𝑅 𝛼

𝜇𝑃𝛽𝑅𝛽 
𝑃0 

 

𝑃5 =  
𝜆𝑃𝛼𝑅𝛼 )

𝜇𝑃𝛽𝑅𝛽 
𝑃0 

 

𝑃6 =  
𝛼𝑆 

𝛽 
𝑃0 

 

𝑃7 =  
𝜆𝑃𝛼𝑆 

𝜇𝑃𝛽 
𝑃0 

 

𝑃8 =  
𝜆𝑄𝛼𝑆 

𝜇𝑄𝛽 
𝑃0 

 

𝑃9 =  
𝛼𝑅𝛼𝑆 

𝛽𝑆𝛽 
𝑃0 

 

𝑃10 =  
𝜆𝑃𝛼𝑆 𝛼𝑅

𝜇𝑃 𝛽𝑆𝛽 
𝑃0 

 

𝑃11 =  
𝜆𝑄𝛼𝑆 𝛼𝑅

𝜆𝑄𝛽𝑆𝛽  
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𝑑𝑝7(𝑡)

𝑑𝑡
=  𝜆𝑃 𝑃6(𝑡)… (38) 

𝑑𝑝8(𝑡)

𝑑𝑡
=  𝜆𝑄 𝑃6(𝑡)… (39) 

𝑑𝑝9(𝑡)

𝑑𝑡
+ (𝜆𝑃 + 𝜆𝑄 + 𝛽𝑠) 𝑃9(𝑡) =  𝛼𝑅 𝑃6(𝑡)… (40) 

𝑑𝑝10(𝑡)

𝑑𝑡
=  𝜆𝑃 𝑃9(𝑡)… (41) 

𝑑𝑝11(𝑡)

𝑑𝑡
=  𝜆𝑄 𝑃9(𝑡)… (42) 

Which are linear differential equations with constant coefficients that can be numerically resolved in a variety 

of ways, in this demonstration, the solution of equations is obtained using the Eigen value technique, with ei 

serving as the Eigen values and Vi serving as the corresponding eigenvectors. 

𝑉(𝑡) = ∑ 𝑘𝑖  𝑒𝑥𝑝11
𝑖=0 (𝑒𝑖 ∗ 𝑡)𝑣𝑖 with 𝑉(0) = [1 0 0 . . . 0]𝑇 , 

𝑉(𝑡) = [ 𝑃0(𝑡)𝑃1(𝑡) . . .   𝑃11(𝑡)]𝑇 …  (43) 

The reliability of system at anytime t is given by 𝑅(𝑡) = 𝑃0(𝑡) + 𝑃3(𝑡) + 𝑃6(𝑡) + 𝑃9 (𝑡).  Thus, the reliability 

& availability of the system containing the Markov process may be easily determined by modeling the 

corresponding reliability function and availability function transition diagrams. 

3. Results and Discussion 

The findings of the system's time-dependent availability are computed using MATLAB software. The 

findings are presented as a table [2]  and graph [2]. 

 

       

 

 Table 2: Effect of availability w.r.t. time 

 

 

 

 

 

 

 

 

 

 

Time (months) Availability 

0 1 

15 0.95 

30 0.91 

45 0.84 

60 0.80 

75 0.73 

90 0.69 

105 0.61 

120 0.50 

135 0.46 

150 0.40 

165 0.36 

180 0.28 

195 0.22 

210 0.15 
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Figure 2: Variation of availability w.r.t. time 

3.1 Reliability of the system 

Integrating analysis, assurance, and reliability optimization across the design, production, and usage 

lifecycles is necessary to meet the demands of high product dependability and long life. The reliability of 

the finished product is closely tied to the effectiveness of the production process and the dependability of the 

manufacturing system. Even the best design is frequently insufficient to finish the job. The main technique 

for determining and enhancing the competency of complex systems is the dependability analysis of essential 

components. The following table [3] and graph [3] present the findings of the reliability analysis: 

Table 3: Effect of reliability w.r.t. time 

Time (hrs.) Reliability R(t) 

0 1 

20 0.934657 

60 0.80007 

100 0.797067 

140 0.654371 

180 0.546987 

220 0.434201 

260 0.354267 

280 0.245389 

320 0.134526 

350 0.045984 
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Fig. 3: Variation of reliability w.r.t. time 

3.2 Steady-state Availability of the system 

The results of steady-state availability are described in form of tables [4] and graphs [4]. The table 4 is 

developed by fixed the (𝜆𝑄 = 0.02, 𝛼𝑅= 0.05, 𝛼𝑆 = 0.07,  𝜇𝑄= 0.002, 𝛽𝑅= 0.005, 𝛽𝑆 = 0.007) as a constant and 

varying the value of (𝜆𝑃, 𝜇𝑃). 

Table 4: Effect of failure and repair rates of GDC machine on availability 

𝜆𝑃 → 

𝜇𝑃 ↓ 

 

0.01 

 

0.03 

 

0.05 

 

0.08 

 

0.11 

 

Fixed Value 

0.001 0.7581 0.7215 0.7136 0.7078 0.7003 𝜆𝑄 = 0.02, 𝛼𝑅= 0.05,  

𝛼𝑆 = 0.07,  𝜇𝑄= 0.002, 

𝛽𝑅= 0.005, 𝛽𝑆 = 0.007 

0.003 0.8170 0.7580 0.7350 0.7240 0.7072 

0.005 0.8860 0.7920 0.7570 0.7410 0.7311 

0.008 0.9270 0.8205 0.7816 0.7506 0.7148 

0.011 0.9430 0.8621 0.8040 0.7750 0.7550 

The availability values for different values of failure and repair rates are shown in Table No. 4. The 

availability values range from 0.7003 to 0.9430. The values of the table [4] are represented as a graph [4], 

as follows: 

 

 

Fig. 4: Variation of availability w.r.t. failure and repair rates of GDC machine 
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The importance of the system's availability reduces as failure rates rise. 

The table 5 is developed by fixed the (𝜆𝑃 = 0.01, 𝛼𝑅= 0.05, 𝛼𝑆 = 0.07,  𝜇𝑃= 0.001, 𝛽𝑅= 0.005, 𝛽𝑆 = 0.007) 

as a constant and varying the value of (𝜆𝑄, 𝜇𝑄). 

Table 5:  Effect of failure and repair rates on availability of Gate Cut Machine 

𝜆𝑄 → 𝜇𝑄

↓ 

 

0.02 

 

0.04 

 

0.06 

 

0.08 

 

0.10 

 

Fixed Value 

0.002 0.7816 0.7240 0.7106 0.7060 0.7001 𝜆𝑃 = 0.01, 𝛼𝑅= 0.05,  

𝛼𝑆 = 0.07,  𝜇𝑃= 0.001, 

𝛽𝑅=0.005,𝛽𝑆 = 0.007. 
0.004 0.7981 0.7708 0.7350 0.7201 0.7170 

0.006 0.8370 0.7605 0.7580 0.7403 0.7311 

0.008 0.8767 0.7890 0.7811 0.7560 0.7408  
0.010 0.9182 0.8640 0.8040 0.7718 0.7520 

Table No. 5 shows the different failure and repair rates. The values of availability vary from 0.7001 to 0.9182. 

The values of table [5] are expressed in form of graph [5] as shown below:  

 

 

Fig. 5: Variation of availability w.r.t. failure and repair rates of Gate Cut Machine 

4. Conclusion 
It is obvious that the GDC Machine subsystem requires the most maintenance. Because of its significantly 

higher repair rate on availability compared to other subsystems, subsystem GDC should be given priority. 

Table 2 indicates that the system's time-dependent availability decreases over time. Table 3 shows that as 

the period goes on, the system's reliability declines. The maximum value of availability from table 4 is 

0.9430, which is attained when the failure rate is the lowest (0.01) and the repair rate is the highest (0.011). 

The maximum availability is 0.9182, according to table 5. The best availability, according to the 

aforementioned findings, is 0.9430. 
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